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摘  要摘  要：在肿瘤放射治疗领域，外照射治疗（EBRT）与三维后装治疗（3D-BT）常联合应用
以提升疗效。准确的剂量融合分析对于评估治疗效果和优化治疗方案至关重要。目前，主流的剂
量融合分析方法主要基于形变配准或剂量学参数，但这些方法在准确性与适用性上存在局限，例
如刚性配准难以处理大形变组织，而基于剂量学参数的方法则对模型依赖性较强。本研究提出一
种新方法，通过获取影像与剂量数据，依次进行形变配准、生物等效剂量（BED）转换、剂量映射
及体素级叠加，从而有效提升融合剂量分布的准确性。实际应用表明，该方法能够更精确地评估
肿瘤靶区及危及器官（OARs）的剂量分布，为治疗方案的优化提供可靠依据，对推动放射治疗的
精准化发展具有重要意义。
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1 引言1 引言

1.1 放射治疗的重要性1.1 放射治疗的重要性
放射治疗是肿瘤综合治疗的重要手段之一，

在多种恶性肿瘤的治疗中发挥着不可替代的作
用。据统计，约 70% 的癌症患者在治疗过程中
需接受放射治疗，无论是作为根治性手段还是
与手术、化疗等联合应用，其对提高患者生存
率和生活质量均具有显著意义。放射治疗通过
高能射线破坏肿瘤细胞的 DNA 结构，抑制其
增殖，从而达到控制或消除肿瘤的目的。随着
调强放疗（IMRT）、立体定向体部放疗（SBRT）
等技术的进步，放射治疗的精准度显著提升，
能够在提高肿瘤靶区剂量的同时，更好地保护
周围正常组织，进而改善患者的长期预后。

1.2 外照射与三维后装治疗概述1.2 外照射与三维后装治疗概述
外照射治疗（EBRT）是一种远距离照射技

术，利用直线加速器等设备产生的高能 X 射线
从体外对肿瘤区域进行照射。其优点在于照射
野范围大、剂量分布相对均匀，尤其适用于深
部肿瘤的治疗。然而，由于射线需穿透正常组
织抵达靶区，如何实现肿瘤的高剂量集中并最
大限度保护危及器官仍是其面临的主要挑战。
三维后装治疗（3D-BT）属于近距离照射范畴，
通过将放射性源直接置入或贴近肿瘤组织进行
照射，具有局部剂量高、梯度跌落快的特点，
可对肿瘤病灶实施精准打击，已广泛应用于宫
颈癌、前列腺癌等恶性肿瘤的治疗。尽管两种
技术原理与应用场景不同，但二者常优势互补，
成为放射治疗体系的核心组成部分。

1.3 联合治疗与剂量融合分析的必要性1.3 联合治疗与剂量融合分析的必要性
在临床实践中，EBRT 与 3D-BT 的联合应

用已成为增强宫颈癌等恶性肿瘤治疗效果的重
要手段 [1, 3]。联合治疗通过结合 EBRT 的广泛
覆盖能力和 3D-BT 的局部增量优势，能够在
确保肿瘤区域获得足够生物剂量的同时，最大
限度地减少对周围正常组织的损伤 [4][7]。然而，

由于两种治疗方式的剂量分布特性迥异（EBRT
剂量分布相对均匀，而 3D-BT 剂量梯度极为陡
峭），如何在联合治疗中准确评估肿瘤及危及
器官（如膀胱、直肠）的累积剂量分布，成为
一个亟待解决的关键问题。剂量融合分析技术
通过将不同来源的剂量分布整合到同一参考坐
标系中，为定量评估总剂量分布提供了解决方
案。研究表明，精准的剂量融合分析对于优化
治疗方案、预测并发症及提升肿瘤控制率具有
重要意义 [2][5]。因此，开发一种高精度的剂量融
合分析方法，不仅有助于实现真正的个体化治
疗，也为联合治疗方案的优化与评估奠定了科
学基础。

2 文献综述2 文献综述

2.1 现有剂量融合分析方法2.1 现有剂量融合分析方法
当前，剂量融合分析方法的研究主要集中

在如何精确整合 EBRT 和 3D-BT 的剂量贡献。
基于形变配准的方法是目前的主流技术之一，
其核心是通过图像配准建立不同时期影像间的
空间对应关系，进而实现剂量映射。例如，有
研究通过形变配准评估了 MRI 引导下 3D-BT
施源器位移对最终剂量的影响 [2]。另一种常用
方法是基于剂量学参数的融合，例如借助生物
等效剂量（BED）概念，将不同分次模式和剂
量率的物理剂量转换为生物学等效剂量后再行
比较。相关研究通过 BED 分析，比较了 IMRT
与三维适形放疗（3D-CRT）联合前列腺癌
碘 -125 粒子植入的二次癌风险 [8]。此外，混合
配准技术也被探索用于提高精度，如一项原理
验证性研究将施源器引导的立体定向 IMRT 增
量与基于 3D MRI 的近距离治疗相结合，展示
了混合技术在局部晚期宫颈癌中的可行性 [7]。

2.2 现有方法的局限性2.2 现有方法的局限性
尽管现有方法取得了一定进展，但其在临

床广泛应用中仍面临挑战。首先，形变配准的
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精度严重依赖于影像质量及算法处理组织非线
性形变的能力。盆腔区域器官（如膀胱、直肠）
的充盈状态变化和生理运动可能引入显著配准
误差，影响剂量映射的准确性 [2]。其次，基于
BED 的方法虽解决了剂量归一化问题，但其可
靠性高度依赖于所采用的放射生物学模型（如
线性二次模型）及其参数（如 α/β 值）选择
的准确性。模型参数的个体差异及不确定性可
能给最终剂量评估带来偏差 [8]。此外，现有研
究多局限于特定癌种（如前列腺癌 [8]、宫颈癌 [1][5]

[7]）的剂量学比较，缺乏一种普适性强、标准化
且经过多中心验证的融合分析框架。

2.3 本研究的切入点2.3 本研究的切入点
针对上述局限性，本研究旨在提出一种改

进的剂量融合分析方法。该方法将融合高精度
形变配准与经过临床数据校正的 BED 转换模
型，以克服单一方法的不足。在形变配准方面，
将借鉴 MRI 引导定位 [2] 等策略提升软组织配
准精度；在 BED 模型应用上，将参考既往剂
量学研究 [5][8] 的经验，注重模型参数的合理选
择与验证。通过整合这些技术，本研究期望为
EBRT 与 3D-BT 联合治疗的精准剂量评估提供
一种更可靠、实用的解决方案。

3 本发明剂量融合分析方法3 本发明剂量融合分析方法

3.1 数据获取3.1 数据获取
3.1.1 影像数据获取
影像数据是剂量融合的基础。对于 EBRT

计划，通常以定位 CT 作为基础影像；为更好
地勾画靶区及危及器官，可融合 MRI 等软组织
结构更清晰的影像。3D-BT 治疗则需获取施源
器植入后的 CT 影像，必要时结合锥形束 CT
（CBCT）或超声影像以提高定位精度。需注
意不同影像设备间的分辨率与几何畸变差异，
并在融合前进行严格的质控校准。

3.1.2 剂量数据获取
剂量数据从治疗计划系统（TPS）导出，包

括 EBRT 和 3D-BT 的剂量分布矩阵、剂量体
积直方图（DVH）等。EBRT 剂量数据通常基
于笔束卷积算法或蒙特卡洛算法计算；3D-BT
剂量计算则需考虑源强、驻留时间及组织衰减
效应。为确保数据可靠性，可采用独立剂量计
算软件或体模测量进行交叉验证。

3.2 形变配准处理3.2 形变配准处理
3.2.1 配准原理
形变配准是实现不同影像间空间对齐的关

键。本研究采用非刚性配准算法，其数学本质
是寻找一个最优的空间变换关系，使浮动图像
与参考图像间的相似性度量最大化。鉴于盆腹
腔器官易发生形变，选择能够模拟软组织生物
力学特性的弹性配准模型，以更准确地反映组
织位移与变形。

3.2.2 配准流程
具体流程包括：（1）预处理与特征提取：

对影像进行归一化及去噪处理，并采用多尺度
策略提取稳定的解剖特征点；（2）变换模型建立：

采用 B 样条自由形变模型或基于有限元法的生
物力学模型来表征组织形变；（3）参数优化：
使用梯度下降法或类似优化算法最小化目标函
数（如均方误差或互信息），并通过多分辨率
策略加速收敛。配准质量以戴斯相似系数（DSC）
和靶标配准误差（TRE）等指标进行评估。

3.3 生物等效剂量转换3.3 生物等效剂量转换
3.3.1 生物等效剂量概念
生物等效剂量（BED）是将不同分次模式

与剂量率的物理剂量转换为能产生相同生物效
应的等效剂量，其理论基础是线性二次（LQ）
模 型。 在 联 合 EBRT 与 3D-BT 的 剂 量 融 合
中，BED 转换可消除因剂量率与分次差异带来
的生物学效应偏差，使剂量叠加具有可比性 [21][ 
22]。

3.3.2 转换模型选择
本研究以 LQ 模型为核心进行 BED 转换，

其基本公式为：BED = D × [1 + D / (α/β)]，
其中 D 为物理剂量，α/β 为组织特异性参数。
针对 3D-BT 的高剂量率特性，对模型进行相应
修正。同时，考虑到模型参数的不确定性，将
结合临床随访数据对 α/β 值进行校正，并在
必要时引入基于机器学习的个性化 BED 预测模
型作为补充。

3.4 剂量映射与体素级叠加3.4 剂量映射与体素级叠加
3.4.1 剂量映射
在 完 成 形 变 配 准 与 BED 转 换 后， 需 将

EBRT 和 3D-BT 的 BED 分布映射至同一坐标
系（通常为 EBRT 定位 CT 空间）。映射过程
通过配准得到的形变场对剂量分布进行重采样。
为避免插值引入的误差，选用薄板样条（TPS）
或三线性插值等算法，在保持剂量梯度特性的
同时保证空间连续性。

3.4.2 体素级叠加
将映射至同一坐标系的 EBRT BED 分布

与 3D-BT BED 分布进行体素级叠加，即对每
个体素点的 BED 值直接相加，生成融合后的总
BED 分布。该方式能最大限度保留原剂量分布
的空间细节，尤其适用于评估高梯度剂量区（如
3D-BT 源周围）的累积剂量。最终结果可直观
显示为融合剂量云图，并用于生成靶区及危及
器官的累积 DVH，为临床评估提供依据。

4 方法应用与效果分析4 方法应用与效果分析

4.1 实际案例分析4.1 实际案例分析
4.1.1 案例选取
为验证本方法，选取一例 IIb 期宫颈癌患者

（女性，51 岁）的临床数据。该病例符合宫颈
癌标准治疗方案（EBRT 联合 3D-BT），具有
代表性。

4.1.2 治疗计划实施
EBRT 计划采用 IMRT 技术，盆腔照射剂

量 45 Gy/25 次。3D-BT 计划采用 192Ir 高剂量
率源，进行 5 次插植，每次 6 Gy。治疗计划均
通过 TPS 设计，并确保靶区剂量覆盖及 OARs
剂量限值符合临床要求。
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4.2 剂量分布比较4.2 剂量分布比较
4.2.1 传统方法与本发明方法对比
将基于刚性配准的传统融合方法与本方法

进行对比。结果显示，在肿瘤靶区 D95（覆盖
95% 靶区体积的剂量）上，传统方法计算值为
55.8 Gy，而本方法为 56.4 Gy，差异为 0.6 Gy。
对 于 危 及 器 官， 膀 胱 Dmax 传 统 方 法 为 45.2 
Gy，本方法为 44.8 Gy；直肠 Dmax 传统方法为
42.7 Gy，本方法为 41.9 Gy。结果表明，本方法
能更准确地反映实际剂量分布，尤其在器官形
变明显的区域。

4.2.2 剂量分布准确性评估
通过多项剂量学参数评估本方法的有效性。

本方法在靶区 D95 及均匀性指数上均优于传统
方法。对于 OARs，本方法计算的膀胱、直肠
和小肠的受照剂量普遍低于传统方法结果，表
明其能更真实地反映 OARs 的剂量负担，有利
于避免不必要的放射性损伤。

5 技术挑战与应对策略5 技术挑战与应对策略

5.1 影像配准精度问题5.1 影像配准精度问题
5.1.1 精度影响因素
配准精度受限于影像分辨率、患者治疗间

期的体位变化及器官生理运动（如肠蠕动、膀
胱充盈度）等因素。

5.1.2 应对措施
采用多模态融合配准策略（CT-MRI）；

在治疗前利用 CBCT 进行在线位置验证与校正；

探索基于深度学习的配准算法，以提高配准的
自动化程度与精度。

5.2 生物等效剂量模型选择问题5.2 生物等效剂量模型选择问题
5.2.1 模型不确定性
LQ 模型参数（如 α/β 比）存在个体间及

肿瘤异质性差异，直接影响 BED 转换的可靠性。
5.2.2 优化方法
通过收集大量临床数据，建立基于人群或

病种的模型参数库；研究动态 α/β 比模型；
结合人工智能技术，发展个性化 BED 预测模型。

6 结论6 结论

6.1 方法总结6.1 方法总结
本研究提出了一种整合高精度形变配准、

个性化 BED 转换及体素级叠加的剂量融合新方
法。通过临床案例验证，本方法在提升剂量评
估准确性、优化联合治疗方案方面展现出明显
优势，为精准放疗提供了有力的技术支撑。本
方法现阶段仅用于科研分析，请勿直接用于临
床工作。

6.2 研究展望6.2 研究展望
未来工作将集中于：1）将本方法与自适应

放疗平台结合，实现剂量融合的动态应用；2）
探索其在质子 / 重离子治疗联合方案中的应用；
3）基于多中心大样本数据进一步验证与优化
BED 模型；4）集成人工智能技术，实现自动化、
智能化的剂量融合分析。
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