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摘  要摘  要：在全球能源转型进程不断加快的大背景下，综合能源系统作为达成能源高效利用以
及可持续发展的关键载体，其运行优化与协同控制方面的问题变得日益受到重视。本文面对综合
能源系统里多能流耦合状况复杂、存在诸多不确定性因素、传统优化方法难以有效处理等难题，
给出了一种借助深度学习的综合能源系统运行优化与协同控制策略。先是搭建了综合能源系统的
状态空间模型，全面考量了电、热、冷、气等多能流的耦合特性，接着设计了基于 CNN-LSTM 混
合模型的预测框架以及深度强化学习优化算法，达成对系统运行状态的精确预测与动态优化，最
后借助协同控制策略的设计，达成了多能源设备的协调运行以及能量流的优化配置。仿真结果显示，
所提方法可提高能源利用效率 11.2%，降低运行成本 36.2%，减少碳排放 25.4%，为综合能源系统
的高效、经济、环保运行给予了有力的技术支持。
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0 引言0 引言

在全球气候变化与能源危机背景下，能源
系统正从传统结构向多能互补的综合能源系统
转型。该系统整合电、热、气等多种能源，实
现梯级利用与多能互补，可有效提升能源效率、
促进可再生能源消纳并降低碳排放。然而，分
布式能源、储能及电动汽车等广泛接入使得系
统运行日趋复杂，传统数学规划与启发式算法
难以满足实时性、适应性与鲁棒性要求。深度
学习凭借强大的非线性拟合与自适应学习能力，
为综合能源系统优化控制提供了新思路。

现有研究多采用数学规划或启发式算法，
虽在确定性优化中有效，却难以应对多目标、
不确定性与实时控制等挑战。当前机器学习应
用多局限于单一能源或简单耦合场景，对复杂
多能流协同优化与实时控制的研究仍显不足。

为此，本文提出一套基于深度学习的解决
方案，重点研究：综合能源系统状态空间建模
与特征提取、基于 CNN-LSTM 混合模型的多
能流预测方法、深度强化学习优化算法设计与
实现、多能流协同控制策略与鲁棒性设计，并
通过仿真验证与性能评估体系检验所提方法的
有效性。

1 综合能源系统概述1 综合能源系统概述

1.1 基本概念与特征1.1 基本概念与特征

综合能源系统是借助先进的物理信息技术
以及创新管理模式，把传统能源系统里的电力、
热力、燃气等多种能源形式进行有机整合，达
成多能流协同优化以及梯级利用的新型能源系
统，它的主要特征有：有多能流耦合特性，呈

现分布式特性，存在不确定性特性，以及用户
参与特性。

1.2 运行优化问题描述1.2 运行优化问题描述

综合能源系统运行优化的目标是在满足系
统安全稳定运行约束的前提下，实现能源利用
效率最大化、运行成本最小化、环境影响最小
化等多目标优化。数学上可以描述为：

目标函数：

minJ=α·C_economic+β·C_
environment+γ·C_reliability

其 中，C_economic 为 经 济 成 本，C_
environment 为环境成本，C_reliability 为可靠性
成本，α、β、γ 为权重系数。

约束条件：包括功率平衡约束、设备运行
约束、网络安全约束和储能设备约束。

1.3 传统方法局限性1.3 传统方法局限性

传统的综合能源系统优化办法主要有数学
规划办法、启发式优化算法以及基于规则的控
制办法，这些办法在应对综合能源系统优化问
题的时候存在一些局限，像是建模较为复杂，
处理不确定性的能力不足，实时性欠佳以及适
应性较差等。

2 深度学习基础理论2 深度学习基础理论

2.1 基本原理2.1 基本原理

深度学习是机器学习的一个重要分支，通
过构建多层神经网络模型，实现对复杂非线性
关系的建模和学习。其基本原理包括神经网络
结构、激活函数和训练机制。常用的深度学习
模型包括卷积神经网络（CNN）、循环神经网
络（RNN）、长短期记忆网络（LSTM）等。
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图 1 展示了典型的深度神经网络架构，包含输入层、多个隐藏层和输出层。

图 1：深度神经网络构架图 1：深度神经网络构架

2.2 深度强化学习理论2.2 深度强化学习理论

深度强化学习将深度学习的感知能力与强
化学习的决策能力相结合，为解决复杂系统的
序贯决策问题提供了有效方法。其核心理论包
括马尔可夫决策过程（MDP）、策略梯度方法
和 Actor-Critic 框架。

2.3 适用性分析2.3 适用性分析

深度学习技术在能源系统优化控制中具有
非线性处理能力、不确定性应对能力、实时决
策能力、自适应学习能力和多目标优化能力等
优势。

3 基于深度学习的优化模型3 基于深度学习的优化模型

3.1 状态空间建模3.1 状态空间建模

综合能源系统的状态空间建模是实现优化
控制的基础。本文将系统状态空间定义为包含
电网友侧状态、热力网状态、燃气网状态、设
备状态和储能状态的多维状态向量。通过主成
分分析等方法对高维状态变量进行特征提取和
降维处理，利用 LSTM 网络构建系统状态转移
模型。

3.2 深度学习优化模型3.2 深度学习优化模型

本文提出的深度学习优化模型主要包括：
CNN-LSTM 混合预测模型：CNN 部分提

取多能流数据的空间特征和耦合关系，LSTM
部分捕捉时间序列的长期依赖关系，输出层预
测未来时段的可再生能源出力和负荷需求。

深度强化学习优化框架：包含状态空间、
动作空间、奖励函数、策略网络和价值网络，
实现多目标优化。

3.3 模型训练验证3.3 模型训练验证

训练数据集构建：包含历史运行数据、气
象数据、能源价格数据和负荷数据。

模型参数优化：采用自适应学习率策略、
合理的批量大小和迭代次数，通过正则化防止
过拟合。

交叉验证方法：采用 k 折交叉验证方法评

估模型性能，确保模型的泛化能力。

4 协同控制策略设计4 协同控制策略设计

4.1 多能流协同控制架构4.1 多能流协同控制架构

本文设计了分层分布式协同控制架构，包
括决策层、协调层和执行层。协同控制机制包
括信息共享机制、协调优化机制和容错控制机
制。

4.2 深度强化学习控制策略4.2 深度强化学习控制策略

控制策略优化目标：最小化运行成本、最
大化能源利用效率、最小化碳排放、保证系统
安全稳定运行。

奖励函数设计：

r=ω1·r_economic+ω2·r_efficiency+ω3·r_
environment+ω4·r_reliability

采用深度确定性策略梯度（DDPG）算法
进行策略迭代。

4.3 自适应控制与鲁棒性设计4.3 自适应控制与鲁棒性设计

自适应学习机制：包括在线学习、迁移学
习和元学习。

鲁棒性控制策略：包括鲁棒优化、容错控
制和预测控制。

异常情况处理机制：包括故障检测、故障
隔离和故障恢复。

5 案例分析与仿真验证5 案例分析与仿真验证

5.1 仿真系统构建5.1 仿真系统构建

本文以某园区综合能源系统为研究对象，
该系统包含光伏发电系统、风力发电系统、微
型燃气轮机、燃气锅炉等能源生产设备，电锅炉、
吸收式制冷机、热泵等能源转换设备，以及电
池储能系统、蓄热装置等储能设备。

5.2 优化效果分析5.2 优化效果分析

通过仿真实验，对比了传统优化方法、深
度学习方法和本文方法的优化效果。



ISSN：3078-8994
EISSN：3104-4492《社会发展与科技创新》  3 卷 1期

18

图 2：不同优化方法的性能对比结果图 2：不同优化方法的性能对比结果

5.3 算法性能验证5.3 算法性能验证

收敛性分析：本文方法在训练 50 轮后收敛，
收敛速度比传统强化学习方法快 40%。

图 3：算法的收敛性分析结果图 3：算法的收敛性分析结果
计算效率评估：单次优化计算时间为 0.3 秒，

满足实时控制要求。
泛化能力测试：在不同季节、不同天气条

件下，本文方法的性能保持稳定。

表 1：不同优化方法性能对比表 1：不同优化方法性能对比

性能指标 传统方法 深度学习方法 本文方法
能源利用效率 (%) 82.5 88.3 93.7

运行成本 ( 万元 / 年 ) 125.6 106.8 89.4
碳排放 ( 吨 / 年 ) 1850 1620 1380
系统可靠性 (%) 92.3 95.7 98.2

响应时间 (s) 15.2 8.7 4.3

6 结论与展望6 结论与展望

本文围绕综合能源系统运行优化与协同控
制相关问题展开研究，构建了充分考量多能
流耦合特性的状态空间模型，提出一种基于 
CNN-LSTM 混合模型的多能流预测方法，设
计了基于深度强化学习的多目标优化算法，并
建立了分层分布式协同控制架构，凭借这些举
措实现了综合能源系统的实时优化控制，有效
提高了能源利用效率以及系统经济性，提高了
系统应对不确定性的能力，提升了系统运行的
鲁棒性与可靠性。为综合能源系统的优化运行
开拓了新的技术途径，为能源互联网建设给予

了关键的技术支撑，为达成“双碳”目标提供
了有效的技术手段。虽然本文取得了一定研究
成果，但仍存在模型复杂度控制、大规模系统
应用挑战以及实时性优化需求等局限性，未来
的改进方向涉及研究轻量化深度学习模型、开
发分布式深度学习算法、融合边缘计算技术、
结合数字孪生技术等。

随着人工智能技术持续发展以及能源系统
不断演进，未来的研究方向主要有以下几个方
面：多智能体协同优化、边缘计算与分布式控制、
数字孪生技术融合、自适应学习与迁移学习、
多目标鲁棒优化等。
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